
121

Roles and Norms for Programming Agent Organizations

Nick Tinnemeier
Utrecht University
The Netherlands
nick@cs.uu.nl

Mehdi Dastani
Utrecht University
The Netherlands

mehdi@cs.uu.nl

John-Jules Meyer
Utrecht University
The Netherlands

jj@cs.uu.nl

ABSTRACT

We present a programming language for implementing multi-
agent systems consisting of a set of individual agents that in-
teract with a computational organization specified in terms
of roles, norms and sanctions. We provide an operational
semantics of the language that can serve as a basis for the
implementation of organizational platforms. The view on
roles is motivated by four key properties we deem impor-
tant for an efficient implementation of agent organizations.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Programming Languages and
Software; D.3 [Programming Languages]: Miscellaneous

General Terms

Languages, Theory

Keywords

Roles, Norms, Organizations, Operational Semantics

1. INTRODUCTION
The complexity of (distributed) software systems has in-

creased the need for natural, high-level abstractions to aid
the developer in the engineering process. Developing soft-
ware as a multi-agent system is seen as one such suitable
abstraction. In particular, the use of organizational abstrac-
tions has gained interest within multi-agent systems research
[14]. In this approach a multi-agent system is analyzed and
designed as a computational organization using social con-
cepts such as roles and norms. Roles allow us to abstract
from the individuals that will play them and are particu-
larly useful in the development of open systems in which no
assumptions can be made about the internals and behav-
ior of the agents that will interact with it. When little is
known about the behavior that the interactants exhibit a
mechanism is needed to regulate their behavior. The nor-
mative aspect of organizations addresses this issue by effec-
tuating norms the interactants ought to follow. To allow
for a straightforward implementation, the concepts used in
design should be reflected in a programming language. Not

Cite as: Roles and Norms for Programming Agent Organizations,
N.A.M. Tinnemeier, M. Dastani and J-J. Ch. Meyer, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

surprisingly also the area of agent programming languages
is shifting attention from constructs for implementing single
agents to social concepts for programming organizations.

Roles are one of the cornerstones in constructing orga-
nizations. Indeed, roles are a recurring concept in agent
development methodologies [10] and they are first-class ab-
stractions in several approaches to implementing software
systems – within the area of multi-agent systems (cf. [1, 9,
4, 5, 7]) and outside this area (cf. [8, 12]). The role (and the
organizational) metaphor accords with how we conceive and
structure our world [8]. A host of different interpretations
of the concept of role witnesses the lack of consensus on a
crisp definition. Kristensen [8] introduces roles as first-class
implementation entities in object-oriented programming. In
Role-Based Access Control (RBAC) [12] roles are used to
flexibly manage the access of users to resources. In [5] and
[7] the concept of role is used, comparable to RBAC, as a la-
bel to assign norms (such as obligations and permissions) to
agents based on the roles they play. Dastani et al. [4] define
roles as entities that are specified by the mental attitudes
beliefs, goals and planning rules. Agents playing a role inter-
nalize these mental attitudes and execute them. Baldoni et
al. [1] extend the Java programming language with roles as
an integral part of an organization. Roles are implemented
as inner classes of the class that implements the organiza-
tion and empower their players (by providing methods) to
access and change the state of the organization (by means of
method invocation). Conversely the role requires its players
to possess certain capabilities (by requiring certain methods
in the class that implements the player). Based on amongst
others [1] the JADE (Java Agent DEvelopment) framework
is extended to encompass organizations and roles as first-
class abstractions in [9].

Despite little agreement on a definition of role still some
properties can be identified we think are important in ef-
ficiently constructing organizations. Firstly, as argued by
Colman and Han [2] for developing adaptable organizations
roles need to be organization-centric rather than player-
centric. This means that a role exists inside an organiza-
tion as is the case with the approaches of [1] and [9], instead
of being an adjunct of its player, an approach taken by [8]
and [4]. The organization-centric view promotes the princi-
ple of separation of concerns. That is, the organization and
its roles can be developed apart from the agents that will
play them. Secondly, we observe that roles seem to have
a prescriptive character. That is to say, they prescribe an
expected behavior to their players and in this way guide the
players in how to interact with the organization in a mean-

Cite as: Roles and Norms for Programming Agent Organizations, Nick
Tinnemeier, Mehdi Dastani, John-Jules Meyer, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker,
Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest,
Hungary, pp. 121–128
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

122

ingful way. This property is in some way exhibited by all
of the previous mentioned approaches and also follows, for
instance, from the definition of [10] that introduces a role as
“a class that defines a normative behavioral repertoire of an
agent.” Thirdly, roles are employable, meaning that a player
can employ its role by delegating it a task without the need
to know how this task is executed. The roles of [1, 9, 4, 8] can
all be delegated a task. Lastly, we argue that roles should
be declarative. This accords more with the declarative na-
ture of other concepts such as norms by which organizations
are specified. Moreover, most agent-oriented programming
languages are based on declarative concepts such as beliefs
and goals that are equiped with a well-defined formal seman-
tics. By reclycing these concepts we rely on a great body
of research and it allows the programmer to specify roles in
terms he/she is already familiar with. Specifically, assumed
that roles are employable, attributing goals to roles seems
to offer the right level of abstraction, because agents that
interact with the organization then need not be concerned
with which low-level procedures to use to reach a certain
state. The approaches of [4, 5, 12, 7] adopt a declarative
view on roles, but only [4] explicitly attributes the same
mental attitudes to roles as often used for agents.

In general, we conjecture that all of these properties should
be united in an implementation framework for organizations.
Moreover, for a clear understanding of the constructs we
deem it very important that they are equiped with a ver-
ifiable and meaningful semantics. None of the mentioned
approaches meets this first point and none of them except
for [4] is endowed with a formal semantics. This paper aims
to fill this gap by developing an operational semantics for a
programming language with the emphasis on organizations
and roles that unites all properties as mentioned above. The
result serves as a basis for the implementation of organiza-
tional platforms. Because roles cannot be understood with-
out the organization they are part of we integrate our work
on roles in the already existing research of [3] that defines
an operational semantics for an organizational programming
language with primary focus on the normative aspect. The
existing operational semantics facilitates the integration.

Section 2 introduces the key concepts and their under-
lying philosophy. Section 3 introduces the syntax of the
programming language that is endowed with an operational
semantics by section 4. Section 5 concludes this paper. To
illustrate our proposal we use an example of a conference
management system in which authors can upload papers
and that supports reviewers and program chairs with the
reviewing process.

2. AGENT ORGANIZATIONS
In our view a multi-agent system is composed of a het-

erogeneous set of agents that interact with an organization.
The property of heterogeneity refers to the agents possi-
bly being implemented by different parties using different
(agent) programming languages. What is more, we assume
that the developer of the agents is possibly different from
that of the organization, i.e. to the organization and its de-
veloper agents are black boxes and no assumptions can be
made about their behavior. A concrete example of a multi-
agent system is depicted by figure 1. The remainder of this
section elaborates on all these components.

An organization encapsulates a domain specific state and
function, e.g. a database and accompanying operations to

c o u n t s - a s
s a n c t i o n s

p o s i t i o n s

e n a c t / d e a c t

a c t i o n s

a g e n t

e x t e r n a l a c t i o n s

o r g a n i z a t i o n

m e s s a g e s

ins t i t u t i ona l f ac ts

b r u t e f a c t s

Figure 1: A snapshot of a multi-agent system.

store submitted papers for the conference management sys-
tem. This domain specific state is described by the brute
facts and the function is described by external actions that
can be used to modify it.

To interact with the organization in a meaningful way
agents enact roles that are an integral part of the organi-
zation. This accords with organization-centric view. In our
framework and similar to that of [4] a role is specified by
the same concepts as that of BDI agents, viz. by the mental
attitudes belief, goal and plan. The same roles enacted by
different agents share a common type of mental state, yet
this state may differ in particular details. For example, the
reviewer role has goals and beliefs about papers to review,
but which papers and how many is specific to the role en-
actment at hand. When an agent desires to enact a role and
the enactment is allowed by the organization, these details
are incarnated resulting in an instantiation of the role. In-
spired by [10] we refer to the instance of a role by the term
position: a role assignment that can be occupied by at most
one agent at a time.

A player configures its position by inspecting and altering
the mental state, in particular, by querying and updating
beliefs and goals. A player of the reviewer position can, for
example, delegate it a goal to review its papers and update
the position’s beliefs with the written reviews. Moreover,
similar to [4] a position is either active or inactive. When
a position is inactive it will not execute any of its plans.
This is particularly useful when altering and inspecting the
mental state. A position can only be activated and deacti-
vated by its player. The interaction between position and its
player is bidirectional. An active position can communicate
with its player by sending it messages. The reviewer posi-
tion can, for example, send its player its assigned papers and
inform it about when the reviews should be uploaded. The
two way interaction between position and its player imple-
ment the properties of employability and prescriptiveness. A
player can employ its role by delegating it goals and activat-
ing it, whereas the position by sending messages can inform
its player about what it is expected to do to achieve a cer-
tain goal. A position obtains its computational meaning by
the interaction of its player, and therefore differently from
[10] in this paper a position cannot exist without an agent
associated to it. Indeed, this property explains an impor-
tant difference between an agent and a position - agents act
because they want to, whereas positions act because their
players want them to.

Nick Tinnemeier, Mehdi Dastani, John-Jules Meyer • Roles and Norms for Programming Agent Organizations

123

In achieving goals for its player a position acts upon the
brute state by the performance of external actions. For ex-
ample, storing a review in a database that can be read by an
author position later on. As can be seen in figure 1 only po-
sitions can access and alter the brute facts. This promotes
the principle of data hiding, i.e. the brute facts are encapsu-
lated by the organization and can only be (partly) read and
manipulated by the agents via their positions. Note that po-
sitions implement a mechanism comparable to RBAC [12].

Although a position is ideally implemented to obey the
organizational rules, we still consider a separate monitoring
and sanctioning mechanism crucial for the coordination of
the overall system. Why norms and sanctions are needed is
explained by the synergy of position and player – the behav-
ior of position and player can only be understood in terms
of their interaction – and the fact that disallowing violations
of the norms drastically decreases the players’ autonomy [6].
Why a separate mechanism is needed is explained by three
observations. Firstly, violations of the rules cannot be fully
prevented by the position alone. The position cannot by it-
self, for example, prevent a violation of the rule that reviews
should be uploaded before the notification phase starts. Sec-
ondly, some rules are hard to implement in the positions
because some pertain to the interplay between different po-
sition/player pairs, i.e. violations of one or more players
might be revealed by actions performed on behalf of an-
other. When the program chair, for example, puts the sys-
tem in the notification phase this will lead to a violation by
all the reviewers which have not yet uploaded their reviews.
Thirdly and most importantly, the implementation of norms
and sanctions is a different concern than the implementation
of roles. Separating their implementation increases the man-
ageability and reusability of both concepts.

Our monitoring and sanctioning mechanism is based on a
simple account of counts-as rules as defined by Grossi [6],
inspired by the work of Searle [13], and endowed with an
operational semantics by Dastani et al. [3]. Counts-as rules
normatively assess the brute facts of the organization, for
example by specifying that an uploaded paper of more than
15 pages counts as a violation of the page limit. Counts-
as rules thus label certain brute states with a normative
judgment. This labelling is stored in the institutional facts.
Sanction rules define the sanctions that should be imposed
given a certain normative judgment. Sanction rules are in-
verted counts-as rules that relate a normative labelling with
a set brute facts that should be accommodated. For exam-
ple, by expressing that a violation of the page limit counts as
a fine of 250 euro. Sanctions thus alter the brute facts of the
organization. It should be noted that we allow the accom-
modation of a brute fact to have side effects such as sending
a message or issuing a credit card. Besides the judgments
that are sanctioned by the sanction rules, [3] introduces a
special label viol⊥ to mean that all external actions that
would lead to this special label are made impossible. We ac-
knowledge that there are also other approaches to regulate
the behavior of agents, e.g. electronic institutions [5], the
deontic component of Moise+ [7] and coordination artifacts
[11]. A more elaborate discussion of the normative aspect
and a comparison of related work can be found in [3] and is
beyond the scope of this paper.

3. SPECIFYING ORGANIZATIONS
This section defines the syntax by which organizations

〈Org〉 = {"Roles:" {〈name〉 ":" 〈file〉}
| "Facts:" {〈b literals〉}
| "Effects:" 〈effects〉
| "Counts-as rules:" 〈counts as〉
| "Sanction rules:" 〈sanctions〉 };

〈effects〉 = {"{"〈b literals〉"}" 〈atom〉 "{"〈b literals〉"}"};
〈counts as〉 = {〈b literals〉 "=>" 〈i literals〉};
〈sanctions〉 = {〈i literals〉 "=>" 〈b literals >〉};

Figure 2: EBNF grammar of an agent organization.

are specified. Henceforth, we use 〈atom〉 to denote an atom
starting with a lowercase letter. Furthermore, we use two
disjoint subsets of the set of 〈atom〉s, of which the elements
are denoted by 〈b atom〉 and 〈i atom〉 respectively. Given a
set of 〈literal〉s, positive or negative atoms, we write 〈b literal〉
and 〈b literals〉 to denote respectively the literal and set of
literals containing solely 〈b atom〉s. The tokens 〈i literal〉
and 〈i literals〉 are defined in a similar fashion. The syntax
by which organizations are specified is depicted in figure 2.

Note that the specification of an organization does not
include a specification of the agents, since these are situ-
ated outside the organization. The roles of the organization
are attributed a 〈name〉 and are specified in a 〈file〉. The
(brute) facts specify the initial state. The conference man-
agement system, for instance, is initially closed denoted by
a fact phase(closed) and the list of uploaded papers is ini-
tially empty denoted by papers([]). The brute facts change
during the execution of the organization due to external ac-
tions of the positions. The effect of these external actions
on the brute state is specified by means of the effect rules,
triples consisting of an action name enclosed by two sets of
brute facts. The antecedent specifies the state of the brute
facts in which the action can be performed and the conse-
quent specifies the effect that should be accommodated in
the brute facts. As an example consider the following effect
rule that specifies that during the submission phase an au-
thor A can upload a paper P which is then stored in the list
of received papers:

{ phase (submiss ion) , papers (Rs) }
upload (A,P)

{ not papers (Rs) , papers ([(A,P) | Rs])}

The counts-as rules associate a normative judgment with
a certain brute state and the sanction rules specify the sanc-
tions in terms of the brute facts that should be accomodated
given such a judgment. For example, consider a counts-as
rule that labels the fact that an author A sent a paper P of
more than 15 pages as a violation:

{papers (As) , (A,P)∈As , pages (P)>15} ⇒ { v i o l (s ,A)}

which is sanctioned by a fine of 250 euro as specified by the
following sanction rule:

{ v i o l (s ,A)} ⇒ { f i n ed (A,250)}

For the specification of the syntax of roles the atom with
predicate name ’construct’ is denoted by 〈constr atom〉 and
the atom with predicate ’destruct’ by 〈destr atom〉. The
syntax for specifying roles is defined as depicted in figure 3.

For the sake of generality we leave the language by which
roles are implemented largely unspecified. We encourage
the reuse of (parts of) existing BDI-based programming lan-
guage endowed with a formal semantics. Without loss of
generality we assume that a role is specified by a set of ini-
tial beliefs denoting the information about its environment
and actions to modify it, a set of goals denoting the desired

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

124

〈Role〉 = "Beliefs:" 〈belief〉+
"Goals:" 〈goal〉+
"Constructors:" 〈constr〉+
"PG-rules:" 〈pgrule〉+
"Destructors:" 〈destr〉+;

〈constr〉 = 〈constr atom〉 "<-" 〈test〉 "|" 〈plan〉;
〈pgrules〉 = ([〈goalquery〉] "<-" 〈belquery〉 "|" 〈plan〉)+;
〈destr〉 = 〈destr atom〉 "<-" 〈test〉 "|" 〈plan〉;
〈test〉 = "B(" 〈belquery〉 ")" | "G(" 〈goalquery〉 ")"

| "E(" 〈envquery〉 ")" | "I(" 〈instquery〉 ")"
| 〈test〉 "&" 〈test〉;

〈envquery〉 = "true" | 〈b literal〉 | 〈envquery〉 "and" 〈envquery〉
| 〈envquery〉 "or" 〈envquery〉 | "(" 〈envquery〉 ")";

〈instquery〉 = "true" | 〈i literal〉 | 〈instquery〉 "and" 〈instquery〉
| 〈instquery〉 "or" 〈instquery〉 | "(" 〈instquery〉 ")";

〈belquery〉 = "true" | 〈literal〉 | 〈belquery〉 "and" 〈belquery〉
| 〈belquery〉 "or" 〈belquery〉 | "(" 〈belquery〉 ")";

〈goalquery〉 = "true" | 〈atom〉 | 〈goalquery〉 "and" 〈goalquery〉 |
| 〈goalquery〉 "or" 〈goalquery〉 | "(" 〈goalquery〉 ")";

Figure 3: EBNF grammar of a role.

state of the world, external actions to act upon the brute
facts and actions to communicate with its player. Inspired
by object-oriented programming we introduce the notion of a
constructor, a plan that is executed upon instantiation with
the responsibility to put a freshly created position in a valid
state. A position is instantiated when an agent enacts a role.
In enacting a role the enactant provides a list of arguments
with which it wishes to enact the role. These arguments are
matched with the parameters of the constructor. Because a
role can only be enacted under certain circumstances it is
guarded by a pre-condition, a query evaluated over the be-
liefs and goals (marked by B and G) of the position, and the
institutional (marked by I) and brute (marked by E) state.
For example, a constructor:

cons t ruc t (name(N) , amount (Nr))
<− E(phase (reg) and i nv i t ed (N)) & B(Nr≥3) | π

specifies that the reviewer role can only be enacted if en-
actant N is invited and agrees to minimally review three
papers. When these requirements are met the plan π is
executed that stores the name of the reviewer as a belief
name(N), adopts a goal review(Nr) and registers the re-
viewer to the system by performing an external action. A
role is endowed with a set of planning goal rules that describe
which plan should be used to achieve a goal given certain
beliefs. Consider, for example, a pg-rule of the reviewer role
for the goal review(Nr):

review (Nr)
<− E(phase (rev)) & B(not n o t i f i e d (rev)) | π

that in the reviewing phase and has not notified its player
yet, notifies it about its assigned papers and requests it to
review them. The destructor of a role is a plan that is called
upon de-enactment of a position. Similar to enactment de-
enactment can only take place under certain circumstances
and therefore we equip the destructor with a guard. For
example, a reviewer can only de-enact its role in the notifi-
cation phase when it has uploaded all its reviews and which
will de-register the reviewer:

de s t ruc t ()
<− E(phase (not)) & B(nr (X) and up(X)) | π

4. EXECUTING ORGANIZATIONS
This section defines the semantics of organizations as spec-

ified by the syntax as defined in section 3. The semantics

is defined by means of a transition system that is built of
a set of axioms and transition rules for deriving transitions
that describe how the configuration of a program transforms
from one into another.

4.1 Preliminaries
In our system roles are a core ingredient in implementing

organizations. As an instance of a role a position has a state
that changes during execution.

Definition 1. A position, typically denoted by ρ, is a tu-
ple 〈p, Σ, Γ, Π, f〉, in which:
- p is the label uniquely identifying the position. This

name has the form i.k with k a unique identifier and i
an agent identifier denoting the player. From here on we
say that a position p is played by i iff p = i.k;

- Σ is a set of belief expressions 〈belief〉 representing the
belief base of the position;

- Γ is a set of goal expressions 〈goal〉 representing the goal
base of the position;

- Π is a set of adopted plans generated by the pg-rules;
- f ∈ {�,⊥} is a boolean flag indicating the activation

status of the position, � denotes active and ⊥ inactive.
In the following we say that a position 〈p, Σ, Γ, Π, f〉 with
f = � is active.

Besides the positions that are enacted by agents an or-
ganization is characterized by brute facts and institutional
facts. Agents interact with the organization by performing
special designated actions such as enacting a role, activating
and altering a position. These actions can be perceived by
the organization and are stored in its event base.

Definition 2. An organization, typically denoted by O, is
defined as a tuple 〈P, B, I, E〉, in which:
- P is a set of positions (role instances);
- B is a set of 〈b atom〉 expressions describing the brute

state of the organization;
- I is a set of 〈i atom〉 expressions describing the institu-

tional state of the organization;
- E is a list of 〈atom〉s, the event base that stores the

actions that are perceived by the organization. We write
e.E to denote a list with head e and tail E and we write
E.e to mean that element e is appended at the end of
the list.

The execution of an organization cannot be understood
apart from its context, that is the multi-agent system it is
part of. The organization changes due to the actions that
are performed by agents and the execution of positions.

Definition 3. A multi-agent system is a tuple 〈A, O〉 with:
A a set of agents interacting with organization O.

The condition of a constructor and destructor of a role
allow a test on its intrinsic state (goals and beliefs) and ex-
trinsic state (brute and institutional facts). Hence the defi-
nition of the special entailment operator |=t that evaluates
such a test.

Definition 4. Given 〈test〉 expressions ϕ(x) and ϕ′(y) in
which sets of free variables x and y occur, 〈belquery〉 expres-
sion φb, 〈goalquery〉 expression φg, 〈envquery〉 expression
φe, 〈instquery〉 expression φi, first-order entailment relation

Nick Tinnemeier, Mehdi Dastani, John-Jules Meyer • Roles and Norms for Programming Agent Organizations

125

|= and substitution functions τ and τ ′, the entailment rela-
tion |=t that evaluates test expressions w.r.t. beliefs, goals,
brute facts and institutional facts (Σ, Γ, B, I) is defined as:
- (Σ, Γ, B, I) |=t B(φb)τ iff Σ |= φbτ
- (Σ, Γ, B, I) |=t G(φg)τ iff ∃γ ∈ Γ s.t. γ |= φgτ
- (Σ, Γ, B, I) |=t E(φe)τ iff B |= φeτ
- (Σ, Γ, B, I) |=t I(φi)τ iff I |= φiτ
- (Σ, Γ, B, I) |= (ϕ(x)&ϕ′(y))τ iff ∃τ1 : [τ1 = τ |x and

(Σ, Γ, B, I) |= ϕτ1 and ∃τ2 : [τ2 = τ |(y \ x) and
(Σ, Γ, B, I) |= ϕ′τ1τ2]]

with ‘|’ to be read as ‘restricted to the domain’.

The brute state of the organization is normatively assessed
by applying the counts-as rules and sanctions are imposed
by applying the sanction rules. This boils down to adding
the consequences of the (normative or sanctioning) rules of
which the antecedent is satisfied to the (brute or institu-
tional) facts. To this end we define the closure of a set of
facts under a set of rules.

Definition 5. Let l = Φ(x) ⇒ Ψ(y) be a rule with Φ and
Ψ sets of first-order literals in which sets of variables x and
y occur such that y ⊆ x and all variables are universally
quantified in the widest scope. Moreover, we respectively
denote the condition and consequent of a rule l by condl

and consl. Given a set R of rules and a set X of ground
literals the set of applicable rules in X is defined as:

ApplR(X) = {lτ : l ∈ R ∧ X |= condlτ for a substitution τ}
Moreover, let the closure of a set of facts X under a set of
rules R be inductively defined as:

B : ClR0 (X) = X ∪ (
⋃

l∈ApplR(X) consl)

S : ClRn+1(X) = ClRn (X) ∪ (
⋃

l∈ApplR(ClRn (X)) consl)

then the ground closure of X under R is defined as ClR(X)
for the minimal k such that ClRk+1(X) = ClRk (X).

To define the semantics of a multi-agent system that con-
sists of agents and an organization we use four types of
transitions, namely transitions that concern the execution
of: the multi-agent system, individual agents, organizations
and the positions of the organization. Each of these transi-
tions is defined by its own transition system.

4.2 Execution of Agents and Positions
The basic types are the transitions that define the execu-

tion of an agent and the transitions that define the execution
of a position, both denoted by an arrow →. The transition
systems that define these transitions are out of scope of this
paper. The agent transitions because agents are treated as
black boxes and the position transitions to preserve gener-
ality of our approach. In fact, the semantics of a position is
similar to that of agent programming languages and is de-
fined elsewhere. Without loss of generality we assume that
agents can perform observable actions α (of type 〈atom〉)
to interact with the organization and enacted positions, and
can receive messages m (also of type 〈atom〉) that are sent
by the organization. Moreover, we assume agents can ex-
ecute non-observable actions that only affect their internal
state. More precisely, we presume transition rules by which
the following transitions can be derived for an agent config-
uration a identified by i:

1. a
α!−→ a′ : performance of observable action α

2. a
mi,j?−→ a′ : reception of message m sent by j

3. a −→ a′ : performance of an internal action

Similarly, we assume that active positions can execute ex-
ternal actions δ (of type 〈atom〉) that at the organizational
level change the brute state. We also assume that positions
can make internal transitions that only affect their internal
state. Examples of such internal actions are updates of the
belief base and the addition and deletion of goals. Moreover,
we assume that positions can send messages to their play-
ers. More precisely, we assume transition rules by which the
following transitions for an active position ρ can be derived:

1. ρ
δ!−→ ρ′ : performance of external action δ

2. ρ
m!−→ ρ′ : sending of message m to its player

3. ρ −→ ρ′ : performance of an internal action

Note that these transitions do not define how the organi-
zation receives and responds to these actions as performed
by agents and positions. The effect of external actions per-
formed by positions is determined by the organization. Con-
sequently, these transition rules are defined in the organiza-
tion transition system. Also the response of the organization
to the agent’s observable actions is defined in the organiza-
tion transition system, whereas the reception of these actions
is defined by the multi-agent transition system. In defining
these compositional transition systems we use a bottom-up
approach. That is to say, the transition system from which
the transitions of the organization derive is defined first and
these transitions will be denoted by an arrow �→. The tran-
sitions of the multi-agent system are denoted by an arrow
⇒ and are defined in terms of the transitions of the agents
and the organization.

4.3 Execution at the Organizational Level
In defining the rules for organizations we assume an orga-

nization configuration 〈P, B, I, E〉. To start with, we define
the rule that specifies how an organization responds to the
reception of an observable action performed by an agent.

Rule 1. Let α be an external action. Then the rule for
perceiving external actions is defined as:

〈P, B, I, E〉 α?�−→ 〈P, B, I, E.α〉

An organization can thus alway perceive the agents’ ac-
tions and stores them at the end of the list of perceived
actions. The next transitions specify how the organiza-
tion responds to various actions such as enactment and de-
enactment of roles and actions by which players configure
their positions.

Before we explain how agents take up roles we first intro-
duce the transition rules that define the execution of posi-
tions, because these transitions will be used in defining posi-
tion enactment and de-enactment later on. Most actions of
a position only affect its internal state and leave the state of
the organization unchanged. Recall that a position can only
advance in its computation if it is activated by its player.
Internal transitions are defined by the following rule.

Rule 2. Let ρ = 〈p, Σ, Γ, Π,�〉 be an active position, then
the rule for internal actions is defined as:

ρ ∈ P ρ′ = 〈p, Σ′, Γ′, Π′,	〉 ρ → ρ′

〈P, B, I, E〉 �→ 〈(P \ {ρ}) ∪ {ρ′}, B, I, E〉

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

126

The brute state of the organization can only be altered
by the positions by means of the performance of external
actions. The organization uses the effect rules to determine
the effect of these actions. Once the effect of an external
action is effectuated the new brute state is assessed by means
of the counts-as rules and sanctions are imposed accordingly
by means of the sanction rules. An external action can only
be performed when it does not lead to a viol⊥. This way
regimentation is implemented. The next rule defines the
performance of external actions by a position.

Rule 3. Let C be the set of counts-as rules, S be the set
of sanction rules, ρ be an active position and δ an external
action. Further, let up(B, δ) be a function that by means of
the effect rules determines the effect on the brute facts B of
performing action δ. Then the rule for external actions is
defined as:

ρ ∈ P ρ
δ!−→ ρ′ B′ = up(B, δ) I′ = ClC(B′) \ (B′)

I′ �|= viol⊥ B′′ = ClS(I′) \ (I′)

〈P, B, I, E〉 �→ 〈(P \ {ρ}) ∪ {ρ′}, B′ ∪ B′′, I′, E〉

An agent i indicates that it desires to take up a role r with
a list of parameters Φ by performing an action enact(i, r, Φ).
The next transition rule defines role enactment. A role can
be enacted only if the organizational rules are respected.
More precisely, when the arguments Φ match with the ar-
guments of some constructor of which the pre-condition is
satisfied. If so, a position ρ is instantiated out of the role
specification by executing its constructor. The execution of
the constructor boils down to the execution of ρ with the
constructor’s plan in its plan base to a position ρ′ with an
empty plan base. This execution is denoted by a sequence
of transitions: 〈{ρ}, B, I, E〉 �→∗ 〈{ρ′}, B

′, I
′, E〉 that are to be

derived from transition rules 2 and 3. Note that the execu-
tion of the constructor might both change the internal state
of freshly instantiated position ρ as well as the brute and
normative state of the organization. Recall that according
to these rules only active positions can be executed, whereas
similar to [4] an enacted position is initially inactive. This
explains the need for de-activating active position ρ′ (de-
noted by ρ′′). If the position is succesfully instantiated the
agent is informed about this and is sent the identifier of the
position such that it can interact with it.

Rule 4. Let construct(Ψ) ← ϕ | π be a constructor of r
with Φ a list of 〈groundatom〉s and let Ψ be a list of 〈atom〉s.
Moreover, assume a function unify(Ψ, Φ) that evaluates to
the most general unifier τ of Ψ with Φ if they are unifiable
and returns ⊥ otherwise. Then the rule for role enactment
is defined as:

unify(Φ, Ψ) = τ1 (Σ, Γ, B, I) |=t ϕτ1τ2

〈{ρ}, B, I, E〉 �→∗ 〈{ρ′}, B′, I′, E〉

〈P, B, I, enact(i, r, Φ).E〉 mi,p!�−→ 〈P ∪ {ρ′′}, B′, I′, E〉
where p = i.k in which k is a unique identifier

and ρ = 〈p, Σ, Γ, {πτ1τ2},	〉
and ρ′ = 〈p, Σ′, Γ′, {},	〉
and ρ′′ = 〈p, Σ′, Γ′, {},⊥〉
and m = msg(enacted(r))

Enactment of a role might not be successful for various
reasons. For example, when the pre-conditions of role en-
actment are not respected or in case the parameters do not
match with any constructor. The definition of transition
rules that pertain to unsuccesful enactment is out of the
scope of this paper.

A position can only be de-enacted if the condition of some
of its destructors is satisfied. A request of an agent i to
de-enact position p is done by the performance of an ac-
tion deact(p). Note that the agent’s identity is coded in the
identifier p, so an agent can only interact with its own posi-
tion(s). If the de-enactment of the position is allowed, it is
de-instantiated by executing its destructor.

Rule 5. Let ρ be a position played by agent i and let
destruct() ← ϕ | π be a destructor of ρ. Then the rule
for role de-enactment is defined as:

ρ = 〈p, Σ, Γ, Π,⊥〉 ρ ∈ P

(Σ, Γ, B, I) |=t ϕτ 〈{ρ′}, B, I, E〉 �→∗ 〈{ρ′′}, B′, I′, E〉

〈P, B, I, deact(p).E〉 mi,p!�−→ 〈P \ {ρ}, B′, I′, E〉
where ρ′ = 〈p, Σ, Γ, {πτ},	〉

and ρ′′ = 〈p, Σ′, Γ′, {},	〉
and m = msg(deacted(p))

An agent changes the operation status of a position p it
plays by means of an activate(p) and deactivate(p) action,
respectively. A position can only be activated if it is inactive
and can only be deactivated if it is active. The following two
transitions define the organization’s response to an activate
and a deactivate.

Rule 6. Let ρ = 〈p, Σ, Γ, Π,⊥〉 be a position. The rule for
activating a position is defined as:

ρ ∈ P

〈P, B, I, activate(p).E〉 �→ 〈P′, B, I, E〉
where P′ = (P \ {ρ}) ∪ {〈p, Σ, Γ, Π,	〉}

Rule 7. Let ρ = 〈p, Σ, Γ, Π,�〉 be an active position. The
rule for deactivating a position is defined as:

ρ ∈ P

〈P, B, I, deactivate(p).E〉 �→ 〈P′, B, I, E〉
where P′ = (P \ {ρ}) ∪ {〈p, Σ, Γ, Π,⊥〉}

An agent can inspect and alter the mental state of a po-
sition it has enacted. In particular, an agent can inspect
and update its beliefs and goals. The next transition rules
define the inspection and modification of positions. The per-
formance of action test(p, φ) indicates that the player of p
performs test φ on position p. The organization responds
to such an action by sending the agent a message with the
resulting substitution τ of the test, if φ is derivable. Special
substitution ε is used to indicate that φ is not derivable from
the position’s mental state. Note that a player can only per-
form a test on a position’s mental state and not on the brute
and institutional facts.

Rule 8. Let ρ = 〈p, Σ, Γ, Π, f〉 be a position played by
agent i and let φ be a 〈test〉 expression containing solely
〈belquery〉 and 〈goalquery〉 expressions. The rule for per-
forming an internal test on a position is defined as:

ρ ∈ P

〈P, B, I, test(p, φ).E〉 mi,p!�−→ 〈P, B, I, E〉

where m =

{
msg(test(φ), τ) if (Σ, Γ, B, I) |=t φτ

msg(test(φ), ε) otherwise

A goal φ can be delegated to a position p by its player by
means of an action adoptg(p, φ). Dropping a goal proceeds
similarly by action adoptg(p, φ). Goals can always be dele-
gated to and dropped from a position by its enacting agent.
This is specified by the following rule.

Nick Tinnemeier, Mehdi Dastani, John-Jules Meyer • Roles and Norms for Programming Agent Organizations

127

Rule 9. Let ρ = 〈p, Σ, Γ, Π, f〉 be a position and let α =
adoptg/dropg(p, φ) with φ a 〈goal〉 expression. The rule for
adopting/dropping a goal to/from a position is defined as:

ρ ∈ P

〈P, B, I, α.E〉 �→ 〈(P \ {ρ}) ∪ ρ′, B, I, E〉

where ρ′ =

{
〈p, Σ, Γ ∪ {φg}, Π, f〉 if α = adoptg(p, φ)

〈p, Σ, Γ \ {φg}, Π, f〉 if α = dropg(p, φ)

An agent i can also alter the belief base of a position p
by adding or removing a belief φ with actions adoptb(i, p, φ)
and dropb(i, p, φ), respectively. The following transition rule
defines the addition and deletion of beliefs to a position.

Rule 10. Let ρ = 〈p, Σ, Γ, Π, f〉 be a position played by
agent i and let α = adoptb/dropb(i, p, φ) in which φ is a
〈groundatom〉. Moreover, let ⊕ be a consistency preserving
update operator. The rule for adopting/dropping a belief
to/from a position is defined as:

ρ ∈ P

〈P, B, I, α.E〉 �→ 〈(P \ {ρ}) ∪ ρ′, B, I, E〉

where ρ′ =

{
〈p, Σ ⊕ {φ}, Γ, Π, f〉 if α = adoptb(i, p, φ)

〈p, Σ \ {φ}, Γ, Π, f〉 if α = dropb(i, p, φ)

Not only an agent communicates with its position by per-
forming actions, but also the position can send messages
to its player, i.e. as defined by the position transition 2 of
the previous section. Whenever a position sends a message
the organization propagates this message to the multi-agent
level and assures that this message will always be sent to its
player. This is expressed by the following rule.

Rule 11. Let ρ be a position identified by p and played by
agent i, and let m be a message. Then the rule for sending
messages is defined as:

ρ ∈ P ρ
m!−→ ρ′

〈P, B, I, E〉 mi,p!�−→ 〈(P \ {ρ}) ∪ ρ′, B, I, E〉

4.4 Execution at the multi-agent system level
Hitherto we defined that agents can perform actions to

interact with the organization, can receive messages sent by
the organization and their positions, and we defined how
the organization responds to actions performed by agents.
Having defined these rules we are now able to define the
transition system that brings all this together and specifies
the execution of a multi-agent system. In defining these rules
we assume a multi-agent system 〈A, O〉. We start with the
rule that defines the communication between organization
and agent. Recall that the organization sends messages in
transitions derived by rules 4 (result of enact), 5 (result of
deact), 8 (result of test) and 11 (message sent by position).
Note that due to the construction of rule 11 agents will only
receive messages from positions they play.

Rule 12. Let m be a message and a be an agent identified
by i. Then the rule for communication from organization to
agent is defined as:

O
mi,p!�−→ O′ a

mi,p?−→ a′

〈A, O〉 ⇒ 〈(A \ {a}) ∪ {a′}, O′〉

The following rule defines the performance of an observ-
able action by the agent that is observed by the organization.
Recall that the perception of actions by the organization is
defined by transition rule 1.

Rule 13. Let α be an observable action. Then the rule for
the agent interacting with the organization is defined as:

a
α!−→ a′ O

α?�−→ O′

〈A, O〉 ⇒ 〈(A \ {a}) ∪ {a′}, O′〉

The above rules define interaction between organization
and agents that, consequently, change the state of these two
components. Both organization and agent can make inter-
nal transitions that only affect their own state. The last two
transition rules define the case in which agent and organiza-
tion make an internal transition. Internal transitions of the
organization can be derived by transition rules 2 (internal
execution of position) and 3 (external action executed by
position).

Rule 14. The rule for an internal transition of an agent
at the multi-agent level is defined as:

a → a′

〈A, O〉 ⇒ 〈(A \ {a}) ∪ {a′}, O〉

Rule 15. The rule for an internal transition of an organi-
zation at the multi-agent level is defined as:

O �→ O′

〈A, O〉 ⇒ 〈A, O′〉

4.5 Exemplar multi-agent system execution
An execution of a multi-agent system is a sequence of

configurations that can be generated by applying transition
rules to an initial configuration and thus shows a possible
behavior of the system. We conclude with an example ex-
ecution involving the enactment of a role by an agent and
for which we assume the following initial multi-agent system
configuration:

〈{aj , ...}, 〈∅, B, I, enact(j, r, name(john), amount(3)).E
′〉〉

in which we have an agent named ’john’ that is identified
by j and has just performed an action to enact the reviewer
role (abbreviated by r) with the agreement to review three
papers. Note that currently no position is enacted. Next,
we show how the organization handles the request to en-
act the reviewer role. The transitions that can be derived
at the multi-agent system level are composed of transitions
made by the organization, agents and positions. We show
the complete derivation of the transition that explains the
enactment of the reviewer role at the multi-agent system
level in a bottom-up fashion.

Recall the constructor of this role (as specified in section
3) that consecutively stores the name of the reviewer as a
belief name(N), adopts a goal review(Nr) and registers the
reviewer to the system by performing an external action.
Recall the transitions of a position as presented in section
4.2. Assumed that this role has no initial beliefs and goals,
the execution of its constructor is explained by the following
example sequence of position transitions in which δ denotes
the action of registering ’john’ to the system:

〈j.1, {}, {}, {π},	〉 →
〈j.1, {name(john)}, {}, {π′},	〉 →

〈j.1, {name(john)}, {review(3)}, {π′′},	〉 δ!→
〈j.1, {name(john)}, {review(3)}, {},	〉

The first two transitions do not change the organization, but
the last one does; the registration changes the brute state to

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

128

contain a fact registered(john) as specified by some effect
rule. Assumed that registering is not debt to some counts-as
rule, given the three above transitions we apply rules 2 (for
the first two transitions) and 3 (for the third transition) to
derive the following transitions that view the execution of
the constructor in the context of the organization:

〈{〈j.1, {}, {}, {π},	〉}, B, I, E〉 �→
〈{〈j.1, {name(john)}, {}, {π′},	〉}, B, I, E〉 �→

〈{〈j.1, {name(john)}, {review(3)}, {π′′},	〉}, B, I, E〉 �→
〈{〈j.1, {name(john)}, {review(3)}, {},	〉}, B′, I, E〉

Note that we do not show the brute state. The constructor
of the reviewer role can only be executed if its pre-condition
is satisfied. Recall that for this role this means that ’john’
should be invited as a reviewer and agrees to minimally re-
view three papers. From the parameters of the enactment
we already know that ’john’ wants to review three papers.
Lets assume that ’john’ is invited, i.e. B |= invited(john)
then by applying rule 4 for the previous sequence of transi-
tions we obtain the following transition that pertains to the
handling of the enact action at the level of the organization:

〈∅, B, I, enact(j, r, name(john), amount(3)).E′〉 mj,j.1!�→
〈{〈j.1, {name(john)}, {review(3)}, {},⊥〉}, B′, I, E′〉

The reviewer role is thus successfully instantiated and an
inactive position played by ’john’ is added to the organiza-
tion. What is more, the organization sends ’john’ a message
msg(enacted(r)) (abbreviated by m) to notify him about
the enactment. Out of this transition and our earlier as-
sumption that an agent can always receive messages sent by

the organization, i.e. aj

mj,j.1?−→ a′
j we can derive the final

transition that explains the handling of the enactment at
the multi-agent system level by applying rule 12:

〈{aj , ...}, 〈∅, B, I, enact(j, r, name(john), amount(3)).E′〉〉 ⇒
〈{a′

j , ...}, 〈{〈j.1, {name(john)}, {review(3)}, {},⊥〉}, B′, I, E′〉〉

Now interaction between the reviewer position and ’john’
can start. Once activated, the position will send him the
assigned papers and guide him through the rest of the re-
viewing process. Also, ’john’ can interact with the position
by, for example, uploading its reviews once finished.

5. CONCLUSION
In this paper we have presented a programming language

for implementing open multi-agent systems as consisting of
a set of individual agents that interact with an organization
specified in terms of roles, norms and sanctions. Our view
on roles has been motivated by four key properties, in partic-
ular we see roles as being organization-centric, prescriptive,
employable and declarative. We have endowed this language
with an operational semantics that can serve as a basis for
the implementation of open multi-agent system platforms.

To fully exploit the potential of open multi-agent systems
for developing complex distributed software we see the fol-
lowing directions for future research. In this paper we did
not address how the agents obtain knowledge about which
roles can be enacted and which goals can be delegated to
them. This issue is left for future research. We think the so-
lution of Yellow Pages as used in [9] is a promising first step
in this direction. Moreover, in [14] the importance of rules

to the organizational structure has been emphasized. To us
it seems that there is a resemblance between our notion of
norms and the formalism of [14]. We see norms as a po-
tential candidate in expressing relationships and constraints
between roles. To end with, we stress the importance of a
proof of concept in the form of an implementation. We have
already commenced with an implementation of the frame-
work as proposed in this paper.

6. REFERENCES
[1] M. Baldoni, G. Boella, and L. van der Torre. Roles as

a coordination construct: Introducing powerjava. In
Proc. of 1st Int. Workshop on Methods and Tools for
Coordinating Concurrent, Distributed and Mobile
Systems, 2005.

[2] A. Colman and J. Han. Roles, players and adaptable
organizations. Applied Ontology, 2(2):105–126, 2007.

[3] M. Dastani, N. A. M. Tinnemeier, and J.-J. C. Meyer.
A programming language for normative multi-agent
systems. In V. Dignum, editor, Multi-Agent Systems:
Semantics and Dynamics of Organizational Models,
chapter 16. IGI Global, 2008.

[4] M. Dastani, M. van Riemsdijk, J. Hulstijn, F.Dignum,
and J.-J. C. Meyer. Enacting and deacting roles in
agent programming. In Proc. of the 5th Int. Workshop
on AOSE, page 3382, 2004.

[5] M. Esteva, J. Rodŕıguez-Aguilar, B. Rosell, and
J. Arcos. Ameli: An agent-based middleware for
electronic institutions. In Proc. of AAMAS 2004, New
York, US, 2004.

[6] D. Grossi. Designing Invisible Handcuffs. Formal
Investigations in Institutions and Organizations for
MAS. PhD thesis, Utrecht University, SIKS, 2007.

[7] J. F. Hubner, J. S. Sichman, and O. Boissier.
Developing organised multiagent systems using the
moise+ model: programming issues at the system and
agent levels. Int. J. Agent-Oriented Softw. Eng.,
1(3/4):370–395, 2007.

[8] B. Kristensen. Object-oriented modeling with roles. In
Proc. of the 2nd Int. Conf. on OO Information
Systems, pages 57–71. Springer-Verlag, 1995.

[9] R. G. Matteo Baldoni, Valerio Genovese and
L. van der Torre. Adding organizations and roles as
primitives to the jade framework. In Proc. of the 3rd
Int. Workshop on Normative MAS, 2008.

[10] J. J. Odell, H. Van, D. Parunak, and M. Fleischer. The
role of roles in designing effective agent organizations.
In Software Engineering for Large-Scale Multi-Agent
Systems, LNCS 2603, pages 27–38. Springer, 2003.

[11] A. Omicini, A. Ricci, and M. Viroli. Coordination
artifacts: Environment-based coordination for
intelligent agents. In Proc. of AAMAS 2004, pages
286–293. ACM, 2004.

[12] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer,
29(2):38–47, 1996.

[13] J. R. Searle. The Construction of Social Reality. Free
Press, 1995.

[14] F. Zambonelli, N. Jennings, and M. Wooldridge.
Organisational rules as an abstraction for the analysis
and design of multi-agent systems. IJSEKE,
11(3):303–328, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

